# LCM of 3 and 15

The lcm of 3 and 15 is the smallest positive integer that divides the numbers 3 and 15 without a remainder. Spelled out, it is the least common multiple of 3 and 15. Here you can find the lcm of 3 and 15, along with a total of three methods for computing it. In addition, we have a calculator you should check out. Not only can it determine the lcm of 3 and 15, but also that of three or more integers including three and fifteen for example. Keep reading to learn everything about the lcm (3,15) and the terms related to it.

## What is the LCM of 3 and 15

If you just want to know what is the least common multiple of 3 and 15, it is 15. Usually, this is written as

lcm(3,15) = 15

The lcm of 3 and 15 can be obtained like this:

• The multiples of 3 are …, 12, 15, 18, ….
• The multiples of 15 are …, 0, 15, 30, …
• The common multiples of 3 and 15 are n x 15, intersecting the two sets above, $\hspace{3px}n \hspace{3px}\epsilon\hspace{3px}\mathbb{Z}$.
• In the intersection multiples of 3 ∩ multiples of 15 the least positive element is 15.
• Therefore, the least common multiple of 3 and 15 is 15.

Taking the above into account you also know how to find all the common multiples of 3 and 15, not just the smallest. In the next section we show you how to calculate the lcm of three and fifteen by means of two more methods.

## How to find the LCM of 3 and 15

The least common multiple of 3 and 15 can be computed by using the greatest common factor aka gcf of 3 and 15. This is the easiest approach:

lcm (3,15) = $\frac{3 \times 15}{gcf(3,15)} = \frac{45}{3}$ = 15

Alternatively, the lcm of 3 and 15 can be found using the prime factorization of 3 and 15:

• The prime factorization of 3 is: 3
• The prime factorization of 15 is: 3 x 5
• Eliminate the duplicate factors of the two lists, then multiply them once with the remaining factors of the lists to get lcm(3,3) = 15

In any case, the easiest way to compute the lcm of two numbers like 3 and 15 is by using our calculator below. Note that it can also compute the lcm of more than two numbers, separated by a comma. For example, enter 3,15. Push the button only to start over.

The lcm is...
Frequently searched terms on our site also include:

## Use of LCM of 3 and 15

What is the least common multiple of 3 and 15 used for? Answer: It is helpful for adding and subtracting fractions like 1/3 and 1/15. Just multiply the dividends and divisors by 5 and 1, respectively, such that the divisors have the value of 15, the lcm of 3 and 15.

$\frac{1}{3} + \frac{1}{15} = \frac{5}{15} + \frac{1}{15} = \frac{6}{15}$. $\hspace{30px}\frac{1}{3} – \frac{1}{15} = \frac{5}{15} – \frac{1}{15} = \frac{4}{15}$.

## Properties of LCM of 3 and 15

The most important properties of the lcm(3,15) are:

• Commutative property: lcm(3,15) = lcm(15,3)
• Associative property: lcm(3,15,n) = lcm(lcm(15,3),n) $\hspace{10px}n\neq 0 \hspace{3px}\epsilon\hspace{3px}\mathbb{Z}$

The associativity is particularly useful to get the lcm of three or more numbers; our calculator makes use of it.

To sum up, the lcm of 3 and 15 is 15. In common notation: lcm (3,15) = 15.

If you have been searching for lcm 3 and 15 or lcm 3 15 then you have come to the correct page, too. The same is the true if you typed lcm for 3 and 15 in your favorite search engine.

Note that you can find the least common multiple of many integer pairs including three / fifteen by using the search form in the sidebar of this page.

Questions and comments related to the lcm of 3 and 15 are really appreciated. Use the form below or send us a mail to get in touch.

Please hit the sharing buttons if our article about the least common multiple of 3 and 15 has been useful to you, and make sure to bookmark our site.